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ARTIFICIAL NEURAL NETWORK APPROACH TO PREDICT
COMPRESSIVE STRENGTH OF CONCRETE THROUGH
ULTRASONIC PULSE VELOCITY

M. Bilgehan and P. Turgut

Department of Civil Engineering, Harran University,
Osmanbey Campus, Şanliurfa, Turkey

Plenty of efforts to use ultrasonic pulse velocity (UPV) as a measure of concrete compressive
strength have been implemented in the recent years due to obvious advantages of non-
destructive testing methods. In this article, an artificial neural network (ANN) approach
has been proposed for the evaluation of relationship between concrete compressive strength
and UPV values by using the data obtained from many cores taken from different reinforced
concrete structures having different ages and unknown ratios of concrete mixtures. The pre-
sented approach enables to practically find concrete strengths in the existing reinforced
concrete structures, whose records of concrete mixture ratios are not available or present.
Thus, researchers can easily evaluate the compressive strength of concrete specimens by
using UPV values. The method can also be used in conditions such as too many numbers
of the structures and examinations to be done in a restricted time. The comparison of the
results clearly shows that the ANN approach can be used effectively to predict the com-
pressive strength of concrete by using UPV values.

Keywords: artificial neural networks, concrete, compressive strength, ultrasonic pulse velocity, non-
destructive testing

1. INTRODUCTION

The nondestructive testing (NDT) of concrete bears a great scientific
and practical importance. The subject of using NDT methods has received
growing attention during recent years, especially during the rising need for
quality characterisation of damaged constructions made of concrete (Turgut,
2004). Malhotra (1976) presented a comprehensive literature survey for the
nondestructive methods normally used for concrete testing and evaluation.
Leshchinsky (1991) summarized the advantages of nondestructive tests, com-
pared to core testing, as reduction in the labor consumption of testing, a
decrease in labor consumption of preparatory work, a smaller amount of
structural damage, a possibility of testing concrete strength in structures
where cores cannot be drilled, and application of less expensive testing
equipment. These advantages signify no value if the results are not reliable,
representative, and as close as possible to the actual strength of the tested
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part of the structure. Quality of concrete in structures is generally determined
by standard cubes or cylinders supplied to the construction site (Neville,
1995). Therefore, the determination of the compressive strength of concrete
requires preparation, curing, and testing of special specimens. Although this
is well accepted by the construction industry, some differences do exist
between the cube or cylinder strength and actual strength of concrete in
the structure (Bungey and Soutsos, 2001). These differences generally arise
from the possibility of different curing and compaction of concrete in the
structure. There are quantities of destructive and nondestructive methods
for in-situ concrete strength. The UPV test is one of the most popular nondes-
tructive techniques used in the assessment of concrete properties in structures
(Neville, 1995). The interpretation of the test results, however, is very difficult
since UPV values are influenced by a number of factors although the UPV test
is fairly simple and easy to apply (Ohdaira and Masuzawa, 2000; Davis,
1977). Longitudinal ultrasonic waves are an attractive tool for investigating
concrete. Such waves have the highest velocity so it is simple to separate
them from the other wave modes. The equipment is portable, usable in the
field for in-situ testing, truly nondestructive, and has proven successful for
testing materials other than concrete. In addition, none of the available non-
destructive methods for testing concrete strength is better. Nevertheless, there
are intrinsic and practical factors that may interfere with the determination of
concrete strength by ultrasonic means. Concrete is a composite material con-
sisting of Portland cement, mineral aggregate, water, and air. This complexity
makes the behavior of ultrasonic waves in concrete highly irregular, which in
turn hinders nondestructive testing. In view of the complexities of the
problem, it would appear to be overly optimistic to attempt to formulate an
ultrasonic test method for the determination of concrete strength. On the other
hand, major advancement is desperately needed to improve the current
situation considering the seriousness of the infrastructure problem and the
enormity of the cost for rehabilitation. For instance, it has been demonstrated
repeatedly that the standard ultrasonic method, using longitudinal waves, for
testing concrete can estimate the concrete strength only with �20% accuracy
under laboratory conditions (Popovics, 1998).

In this research, the concrete core samples were taken from existing rein-
forced concrete structures, ranging in age from 28 days to 36 years. Their
concrete mixture ratios were not known. An unknown concrete mixture ratio
in existing reinforced concrete structures is one of the most frequent issues
that cause difficulties to determine the concrete compressive strength–UPV
relationship. In this respect, the strength of concrete cannot be determined
appropriately caused by the nongeneral pattern in the variability in the con-
crete mixture ratio findings obtained from laboratory researches. Thus, these
findings cannot represent a general pattern for analysis as well. In this study,
a new approach is presented by considering the compressive strength–UPV
relationship of concrete cores taken from existing reinforced concrete
structures. In other words, an ANN approach for the estimation of the
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compressive strength of concrete specimens, using UPV values, is utilized in
the study. Compressive strength of concrete prediction was implemented
using ANN models, consisting of one input layer, one hidden layer and
one output layer, for each data set. The analysis was then conducted for
cylinder specimens with different compressive strength due to wide variation
in their UPV.

2. ULTRASONIC PULSE VELOCITY (UPV)

The UPV technique is one of the most popular nondestructive techniques
used in the assessment of concrete properties. Nevertheless, it is very difficult
to accurately evaluate the concrete compressive strength with this method
since UPV values are affected by a number of factors, which do not neces-
sarily influence the concrete compressive strength in the same way or to
the same extent (Trtnik, 2009). The UPV testing is the most commonly used
one in practice among the other available nondestructive methods. The UPV
test is described in ASTM C597 (1991) and BS 1881-203 (1986) in detail.

The longitudinal waves travel faster than the transverse waves. For this
reason, the longitudinal waves are called primary or P waves, and the trans-
verse waves are called secondary or S waves. The dynamic modulus of
elasticity of a homogenous and isotropic material can be determined by
measuring the P and S wave velocities.

The compression wave velocity can be expressed in terms of dynamic
modulus of elasticity Ed and poisson’s ratio n as in the following equations:

VP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Edð1� nÞ

qð1� 2nÞð1þ nÞ

s
ð1Þ

VS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ed
2qð1þ nÞ

s
; ð2Þ

where q is density of material, and VP and VS are primary and secondary
wave velocities of material, respectively.

Relationships between the pulse velocity of concrete, the strength of
concrete, and the dynamic modulus of elasticity of concrete are given in
references (Nilsen and Aitcin, 1992; Philleo, 1955; Sharma and Gupta,
1960; ACI 318-95, 1995; Mehta and Monteiro, 2006). VP primary longitudi-
nal wave velocity of material is determined in this study. The time the pulses
take to travel through concrete is recorded in the test. The velocity is then
calculated as:

VP ¼ L

T
; ð3Þ
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where VP is the pulse velocity (m=s), L is the length (m), and T is the effective
time (s), which is the measured time minus the zero time correction. Numer-
ous experimental data and the correlation relationships between strength and
pulse velocity of concrete have been presented and proposed. Table 1,
suggested by Whitehurst (1951), shows the use of velocity obtained to
classify the quality of concrete.

Tharmaratnam and Tan (1990) and Bungey and Miller (2004) gave the
relationship between UPV in a concrete, V, and concrete compressive
strength, fcube, based on experimental results, as follows:

fcube ¼ aebVP ; ð4Þ

where a and b are parameters dependent upon the material properties.
The ultrasonic pulse is created by applying a rapid change of potential

from a transmitter-driver to a piezoelectric transformation element that

FIGURE 1. Schematic diagram of ultrasonic pulse velocity testing circuit.

TABLE 1 Quality of Concrete as a Function of the UPV

UPV (m=s) >4500 3500–4500 3000–3500 2000–3000 <2000

Concrete quality
(compressive strength of concrete)

Excellent Good Doubtful Poor Very Poor
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causes it to vibrate at its fundamental frequency. The transducer is placed in
contact with the material so that the vibrations are transferred to the material.
The vibrations travel through the material and are then picked up by the
receiver. The wave velocity is calculated using the time taken by the pulse
to travel the measured distance between the transmitter and the receiver. If
only very rough concrete surface is available for use, it is then required to
smoothen and level the surface where the transducer is to be placed. The
transducers are held tight on the surfaces of the specimens, and the display
indicates the time of travel of the ultrasonic wave. This is a very convenient
technique for evaluating concrete quality since the pulse velocity depends
only on the elastic properties of the material and not on the geometry
(Kewalramani and Gupta, 2006). Equipment, such as shown schematically
in Fig. 1, is actually used to determine the UPV through a known thickness
of concrete.

3. ARTIFICIAL NEURAL NETWORKS (ANNs)

ANNs are based on the present understanding of the biological nervous
system although much of the biological detail is neglected. ANNs are mas-
sively parallel systems composed of many processing elements connected
by links of variable weights. The backpropagation network is by far the most
popular among the many ANN models (Lippman, 1987; Kisi, 2008). These
networks are similar to the biological neural networks in the sense that func-
tions are performed collectively and parallel with the units, rather than
having a clear description of subtasks to which various units are assigned.
The term ANN currently tends to refer mostly to neural network models
employed in statistics and artificial intelligence. ANN models are designed
with emulation of the central nervous system in mind, which makes also
them subjects of theoretical neuroscience (Tapkin, 2004; Tapkin et al.,
2006).

The neural network is created for two different phases in the most general
sense. The first phase is the training phase and the second phase is the testing
(simulation) phase (Tapkin et al., 2006). ANNs have the ability of performing
with a good amount of generalization from the patterns on which they are
trained. Training consists of exposing the neural network to a set of known
input–output patterns (Kartam, Flood, and Garrett, 1997; Rafiq, Bugmann,
and Easterbrook, 2001; MathWorks Inc., 1999; Ashour and Alqedra, 2005).
Several methods do exist to train a network. One of the most successful and
widely used training algorithms for multilayered perceptron (MLP) is the
backpropagation (Kartam, Flood, and Garrett, 1997; Flood and Kartam, 1994).

The neural network is operated using backpropagation training algorithm
in this study. Backpropagation neural networks generally have a layered
structure with an input layer, an output layer, and one or more hidden layers
(Kewalramani and Gupta, 2006). As represented by Kewalramani and Gupta
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(2006), in general, each neuron jl in layer l receives multiple inputs Xl�1
i from

neurons in layer l�1 to which it is connected, and then performs a simple
computation to form a single net input Ul

j presented by

Ul
j ¼

Xn
i¼1

Wl
jiX

l�1
i þ hlj ; ð5Þ

whereWl
ji is the connection strength (weight) that connects neuron j in layer l

to neuron i in layer l�1, n is the number of neurons in layer l� 1, hlj is a
threshold value assigned to neuron j in layer l, and Xl�1

i is the input coming
from neuron i in layer l�1 to neuron j in layer l. The net input Ul

j is then
modified by an activation function / to generate an output value Yl

j as shown
in Fig. 2 and presented by

Yl
j ¼ /ðUl

j Þ; ð6Þ

where / is a nonlinear activation function assigned to each neuron in the
network. A continuous nonlinear sigmoid function, commonly used as an
activation function in ANN because it meets the differentiability requirement
needed in the backpropagation algorithm, is represented by

/l
j ¼

1

1þ e�ðUl
j
�hljÞ

: ð7Þ

The modification process is continued in the output layer, where the
error between the network outputs and desired targets is calculated, and then
propagated back to the network through a learning mechanism. The general-
ized delta rule is a widely used learning mechanism in backpropagation

FIGURE 2. Simplified model of an artificial neuron.
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neural networks (Rajagopalan, Prakash, and Naramimhan, 1973). The
implementation of such algorithm updates the network weights and biases
in the direction in which the performance function decreases most rapidly
(reduces the total network error in the direction of the steepest descent of
error) (Kewalramani and Gupta, 2006).

The network consists of layers of parallel processing neuron elements
with each layer being fully connected to the proceeding layer by intercon-
nection strengths, or weights,W (Kisi, 2005). Figure 3 illustrates a three-layer
neural network consisting of layers i, j, and k, input layer, hidden layer and
output layer, respectively.

ANN modelling is getting more popular and has been commonly used in
engineering tasks (Shahin, Jaksa, and Maier, 2001). ANNs have been applied
to many civil engineering problems with some degree of success in the
recent years (Kewalramani and Gupta, 2006). Modelling of material beha-
vior and characteristics plays a significant role in these applications (Tapkin
et al., 2006). This study also covers the contents of characteristics of concrete
specimens and determination of material properties.

4. ANN APPLICATION AND RESULTS

A total of 238 concrete core samples, obtained from 30 reinforced
concrete structures, with ages varying between 28 days to 36 years old, were
tested for this study. Eight core samples were taken from each of these struc-
tures on avarage. Two-hundred thirty-eight independent sets of data were
available for the ultrasonic and the compressive strength of the core testing

FIGURE 3. A typical ANN topology with n input nodes, m hidden nodes, and k output nodes.
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in the laboratory. Thirty-two batches of data, which have very close values,
were eliminated from data set, and a total of 206 data were used in the ANN
analyses. Records containing the aggregate proportions, the water-cement
ratio, and strength value for tested concretes were not available for structures
tested in this study. The cores were obtained from columns, shear, or retain-
ing walls in the reinforced concrete structures. The size of cores was
100� 200mm. No reinforcement existed in the cores. All cores were drilled
horizontally through the thickness of the concrete elements. BS 1881 (1983)
and ASTM C 42-90 (1992) procedures were used for determining the com-
pressive strength of the cores. The cores were tested using ultrasound for
the determination of the velocities of the longitudinal ultrasonic waves
before the execution of destructive compressive test. The velocity of the
propagation of ultrasound pulses was measured by direct transmission using
a Controls E–48 ultrasound device. This device measured the time of propa-
gation of ultrasound pulses with a precision of 0.10ms. The transducers
used were 50mm in diameter, and had maximum resonant frequencies, as
measured in laboratory conditions, of 54 kHz. The compressive strengths
of the concrete cores were then converted to those of a cubical sample with
15mm side length, according to BS 1881 (1983), by using Eq. (8):

fcube ¼
D

1:5þ 1
k

� fcore; ð8Þ

where D is 2.5 for cores drilled horizontally and 2.3 for cores drilled verti-
cally, and k signifies length (after end preparation)=diameter ratio of the core.

The values of the ultrasonic pulse velocities were observed to be lying
within 1900 and 5100m=s, and the concrete cube compressive strengths
varied between 4.00 and 79.00MPa. The test setups under compression
and ultrasound are shown in Figs. 4 and 5, respectively.

The typical multilayer feedforward neural networks are used in the
current application. The problem in this study can be defined as a nonlinear
input–output relation among the influencing factors, which are ultrasonic
pulse velocity and compressive strength of concrete values, for neural
network analyses. The backpropagation algorithm and construction of the
neural network model were carried out in the conceptual ANN simulation.
There was one node in the input layer, corresponding to UPV of concrete
specimens, and one node in the output layer, corresponding to compressive
strength of concrete. All data was divided into two sets: one for the network
learning named the training set, and the other for testing the network named
the testing set. Each set was composed of 118 and 88 pairs of input and
output vectors in training and testing sets, respectively.

The methodology used here for adjusting the weights is called momentum
backpropagation, based on the generalized delta rule presented by Rumelhart
et al. (1986). The learning rates were used for increasing the convergence
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velocity throughout all ANN simulations. The sigmoid function and linear
function were additionally used for the activation functions of the hidden
and output nodes, respectively. The hidden layer node numbers of each
model were determined after trying various network structures since no
theory yet exists clarifying the number of hidden units needed to approximate
a given function. The training of the networks was stopped after 5000 epochs,
when the variation of error became sufficiently small. The error graph for an
ANN model during training is shown in Fig. 6, where it can be seen that the
necessary epochs to reach the training goal was approximately 5000. This

FIGURE 5. The test setup related to the UPV testing.

FIGURE 4. The test setup related to compression testing.
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shows the training of the network was carried out on a sensitive manner
enabling to determine the mean squared error on a dependable basis. In other
words, this high epoch number signified the acuteness in the carried
calculations.

The computer program code for the ANN simulation, including neural
networks toolbox, was written in MATLAB language. Different ANN
architectures were tried using this code, and then the appropriate model
structure was determined for data sets. Numerous trials were carried out in
the neural network environment to determine neuron number of the hidden
layers. Optimum hidden neuron numbers were obtained for different cases.
The ANN model was then tested, and the results were compared by means of
root mean squared error (RMSE) and coefficient of determination, R2,
statistics. The neurons of neighbouring layers were fully connected in
this study.

The network parameters, number of input layer neurons was one,
number of hidden layer neurons was 25, number of hidden layers was
one, and number of output layer neurons was also one. Moreoever, type
of backpropagation learning rule was gradient descent algorithm, activation
functions were tangent sigmoid (tansig) and logarithmic sigmoid (logsig),
learning rate was 0.4, and training performance goal was 10�6. Different
combinations of the number of hidden neurons and activation functions
for the training of the neural network architecture were actually used to have
the optimum number of hidden neurons.

FIGURE 6. Training error versus epoch number for the neural network model.
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The testing set was exploited to evaluate the confidence in the perform-
ance of the trained network. The training data set was normalized before the
analyses, and the predictive capabilities of the feedforward backpropagation
neural network were examined. The basis of this procedure was to demon-
strate the prediction performance of these models. The prediction
performances were then compared with the RMSE values. The lesser the
RMSE, the better the estimates were found to be.

RMSE values can be computed by the following formula:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 pi � oið Þ2

n

s
; ð9Þ

where pi is the predicted value by ANN, oi is the calculated value, and n is
the number of data. The unit of measurement for RMSE is MPa.

The correspondence of all of the data set has been ensured by using the
RMSE approach. The behavior of all of the system, rather than just data set,
can be monitored by this way. Therefore, it is much easier to determine the
number of hidden neurons that can be utilized in the hidden layers. This
calculation is solely done on an RMSE minimization basis so that when the
value of the RMSE for the whole set of data is minimum, the optimum number
of hidden neurons could be determined (Tapkin, 2004; Tapkin et al., 2006).

Any difference between the output and expected values from the input
pattern is interpreted as an error in the system. Weights of the networks
are then used to adjust the using error backpropagation and gradient descent
techniques aiming to minimize the error. The weight update is calculated
from the partial derivative of the error function multiplied by a constant
known as the learning rate. The input training patterns are propagated for-
ward through the network; the mean squared error is summed; and the error
is then backpropagated through each layer until the input layer is reached to
calculate the above-mentioned last term (Todd and Challis, 1999). The train-
ing performance goal is the best yield which can be reached. The perform-
ance of the algorithm is very sensitive to the proper setting of the learning
rate. If the learning rate is set too high, the algorithm can then oscillate
and become unstable. If the learning rate is too small, however, the algor-
ithm then takes too long to converge. The gradient is computed by summing
the gradients calculated at each training example, and the weights are only
updated after all training examples, termed as epoch, have been presented
(MathWorks Inc., 1999).

Lots of trials were carried out to determine the optimum number of
hidden neurons in the ANN simulation. The ANN models by applying the
cross validation process have been analyzed. As a result of this process,
the optimum number of hidden neurons has been obtained as 25 for the
training set of data. Figure 7 shows the RMSE values for different hidden

ARTIFICIAL NEURAL NETWORK APPROACH 11
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neuron numbers. It can be seen that the smallest RMSE and the highest R2

values were obtained by having 25 hidden neurons in hidden layer. The only
variable was hidden neuron number in these analyses. In this respect, the
analyst had the optimum flexibility to be able to determine the number of
hidden neuron numbers solely on a RMSE basis. Further similar analyses
were also undertaken for different learning rate values as presented in
Fig. 8. The optimum learning rate was found to be 0.4 for the concrete
specimens.

FIGURE 7. The performances of the network architecture for different hidden neuron numbers.

FIGURE 8. The performances of the network architecture for different learning rate.
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Many studies suggest UPV as a measure of concrete quality assessment
(Kewalramani and Gupta, 2006). Figure 9 shows a relationship among
compressive strength of concrete and corresponding UPV for the concrete
specimens tested in the laboratory. The data in Fig. 9 contains all of the train-
ing and testing data used in this study. It is clearly depicted in the figure that
UPV values, ranging of 1900 to 5100m=s, suggest a good quality control.
The best fit-curve representing UPV-compressive strength of concrete
relationship is given as

fcube ¼ 0:8822e0:0008VP : ð10Þ

It is observed that the trend obtained from data in Fig. 9 is similar to studies of
Soshiroda and Voraputhaporn (1999), Trezos et al. (1993), and Bungey
(1980) (see Fig. 10).

The obtained results were graphically plotted showing comparison of
predictions through ANN analysis method. Figure 11 shows predicted
compressive strengths of concrete through ANN. The predictions on Fig. 11
are based on data from the testing set implemented to samples that were not
in the training set. The figures clearly show that experimentally evaluated
values of compressive strength of concrete are in strong consistency with
the values predicted through ANN for most of the specimens. Figure 11
clearly depicts the comparison of results in prediction of compressive
strengths based on UPV, using ANN, for concrete specimens.

The RMSE values of each model with different hidden neuron number in
the testing period are given in Fig. 7. It can be seen from the figure that the

FIGURE 9. The UPV versus cube compressive strength of concrete specimens.
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model of hidden layer with 25 neuron has the smallest RMSE (2.06577MPa),
and it has the highest R2 (0.9915). RMSE value of 2.06577 is fairly represen-
tative for specimens. It is not surprising to observe some fluctuations in the
mean squared errors due to the nature of the backpropagation algorithm.
This fact is also depicted visually in Fig. 6. On the other hand, it was
observed that the modelling results were exceptionally close to the real

FIGURE 11. Predicted cube compressive strengths through ANN for concrete specimens.

FIGURE 10. Comparison of UPV-compressive strength trends from some earlier researches.
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compressive strength test results; therefore, there was no doubt regarding the
accuracy of the RMSE values. The RMSE values ranged between 2.06577 and
2.55885, according to Fig. 8. This was really a narrow range, and the exist-
ence of a regular pattern of spread in the RMSE values can be visualized as
the graph is analyzed. The optimum hidden neuron number for specimens
was found to be 25 since the minimum RMSE value was important. Further
analyses were carried on neural network architecture with the 25 hidden
neuron, and it was found out that the optimum learning rate was 0.4. This
presentation of error type is more realistic and meaningful. A more visual
insight to the whole data set’s performance can be obtained and analyzed
this way. A new point of view to the neural network training and testing
can also be drawn with the help of the RMSE and learning rate graphs. Lastly,
the performance of the overall system with such a big amount of input data
for concrete core strength can be more meaningful and easier to analyze by
this method of analysis.

5. SUMMARY AND CONCLUSIONS

This study indicates the ability of the multilayer feedforward backpropa-
gation neural network model as a good technique for determining the
concrete compressive strength. The ANN model performs sufficiently well
in estimation of concrete compressive strength. Gradient descent algorithm
and one hidden layer were employed in the analysis. Analyzing the results
obtained at the end of the study has shown that using UPV data and ANNs,
particularly by the gradient descent algorithm and one hidden layer architec-
ture, was a suitable method to estimate the compressive strength of concrete
specimens. The calculation of RMSEs for the gradient descent network, deter-
mination of the optimum number of hidden neurons, optimum learning rate,
and the relevant analyses also supported this conclusion. The RMSE values
were reasonably small indicating that the estimates were fairly accurate
and the trained network yielded superior results.

Carrying out destructive tests is generally not possible, especially on con-
crete elements which are in service. Therefore, using the help of UPV test results
andmaterial properties of concrete for the estimation by utilizing the neural net-
work techniques help the site engineer to make reasonable estimates about the
concrete compressive strength of these structural members. An ANNmodel can
be constructed in order to provide a quick and dependable means of predicting
the compressive strengths of concrete of structural elements. Neural networks
would be useful to civil engineers especially dealing with concrete engineering,
as an estimation method for compressive strengths of concrete by using UPV
data, and also would provide a sound basis for these and similar types of
analyses. Approximate value of compressive strength in any point of concrete
can then be practically found, by ignoring the mixture ratio of concrete through
and using only longitudinal velocity variable, with the ANN modelling.
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The neural network model to predict compressive strength based on UPV
of concrete specimens is utilized in this study. The prediction made using
ANN shows a high degree of consistency with experimentally evaluated
compressive strength of concrete specimens used. Thus, the present study
suggests an alternative approach of compressive strength assessment against
destructive testing methods.

Neural networks can indicate correlations between sets of data. If these
correlations are significant, then the results imply that there are underlying
physical processed which bring about the observed correlations. Therefore,
it would be reasonable to propose a further study in which the underlying
physical phenomena are investigated. The problem of the relevant elastic
modulus (see Section 2) should be considered as well. This current study
only used data sets which were composed of limited pairs of input and
output vectors. Additional works using more data sets from various areas
could be needed to generalize the conclusions in this study. Different factors
which affect compressive strength of concrete such as density and so forth
should also be considered in future studies.
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